

APP-V 5 SP2 APPLICATION
PUBLISHING AND CLIENT

INTERACTION

1

©2014 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and

views expressed in this document, including URL and other Internet Web site references, may change

without notice. You bear the risk of using it.

Some examples are for illustration only and are fictitious. No real association is intended or inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

2

Contents
Overview ... 4

Intended Audience .. 4

Prerequisite Knowledge .. 4

App-V Files .. 5

App-V Package Files .. 5

APPV File ... 6

App-V Client Data Storage Locations .. 7

Package Store .. 8

Shared Content Store .. 8

Package Catalogs ... 8

Machine Catalog ... 8

User Catalog .. 9

Shortcut Backups .. 9

Copy on Write Files ... 10

Package Registry ... 11

Package Registry Staging vs. Connection Group Registry Staging .. 11

Virtual Registry .. 12

Registry Locations ... 12

App-V Package Store Behavior.. 15

Add Packages .. 15

Mounting Packages ... 15

Streaming Packages .. 15

Background Streaming .. 16

Optimized Streaming .. 16

Stream Faults .. 16

Package Upgrades ... 16

Package Removal .. 16

Roaming Registry and Data ... 17

Registry Based Data .. 17

App-V and Folder Redirection ... 17

App-V Client Application Lifecycle Management ... 20

Publishing Refresh... 20

3

Adding an App-V Package ... 21

Publishing an App-V Package .. 24

Application Launch .. 26

Upgrading an App-V Package .. 28

Upgrading an in use App-V Package ... 29

Removing an App-V Packages ... 29

Repairing an App-V Package ... 30

Integration of App-V Packages .. 31

Rules of Integration ... 31

Extension Points .. 32

Shortcut ... 32

File Type Associations ... 33

Shell Extensions... 34

COM .. 35

Software Clients and Application Capabilities .. 35

URL Protocol handler .. 36

AppPath ... 36

Virtual Application .. 37

Extension Point Rules .. 37

Dynamic Configuration Processing ... 38

Example for Dynamic Configuration Files ... 38

Side by Side Assemblies .. 41

Automatic publishing of SxS assemblies ... 41

Client Logging .. 42

Conclusion ... 43

4

Overview
The App-V 5 SP2 Application Publishing and Client Interaction whitepaper enables App-V administrators

and sequencers to gain a better understanding of how the App-V Client processes packages and

presents them to users. This document provides details around typical client operations with important

locations for data storage, how the publishing refresh process works, and the available integration

points with the local operating system.

The App-V client performs many tasks to present virtual applications that work more like traditionally

installed applications. Understanding the process of publishing and running applications is an important

part of implementing a successful App-V solution. Often, these tasks do not receive the same level of

attention as the delivery methods, but may be more important. To effectively manage you must

understand the functions performed by the App-V client, and how these processes affect the local

operating system.

This document provides information about the following topics:

 App-V Files and Data Storage Locations

 Package Registry

 App-V Package Store Behavior

 Roaming Registry and Data

 App-V Client Application Lifecycle Management

 Integration of App-V Packages

 Dynamic Configuration

 Side by Side Assemblies

 Client Logging

Intended Audience
This document is intended for App-V administrators and provides a better understanding of client

operations to assist with managing your App-V environment.

Prerequisite Knowledge
This document assumes an understanding of App-V infrastructures and concepts. In order to gain a

greater command of App-V knowledge and better understanding of this document, please refer to the

App-V Document Resources Download Page located at: http://www.microsoft.com/en-

us/download/details.aspx?id=27760 and the App-V 5 Administrators Guide at:

http://technet.microsoft.com/en-us/library/jj713487.aspx.

http://www.microsoft.com/en-us/download/details.aspx?id=27760
http://www.microsoft.com/en-us/download/details.aspx?id=27760
http://technet.microsoft.com/en-us/library/jj713487.aspx

5

App-V Files
The App-V Sequencer monitors software installation and creates a package. The package is comprised

of several files that have specific functionality. The primary package file is the APPV file which contains

the captured assets and state information. The additional files provide custom integration information

for publishing applications, sequencing detailed reporting, and optionally sequencing templates and

package accelerators.

The AppV file contains the captured files and state from the sequencing process in a single file. This file

includes architecture of the package file, publishing information, and registry in a tokenized form that

can be reapplied to a machine and to a specific user upon delivery.

For information on creation of App-V Packages review the Microsoft Application Virtualization 5.0

Sequencing Guide available at: www.microsoft.com/en-us/download/details.aspx?id=27760

App-V Package Files
The Sequencer creates App-V Packages and produces a virtualized application comprised of several files.

The following is a description of each of the files created.

File Description

.APPV The Virtual Application Package file containing all assets and state
organized and divided into logical blocks.

.MSI Executable deployment wrapper allowing the manual deployment
of .APPV files or deployment via existing third-party deployment
platforms.

_DeploymentConfig.XML Used for customizing the default publishing parameters for all
applications in a package.

_UserConfig.XML Used for customizing the publishing parameters directed to
specific users for all applications in a package.

Report.xml Summary of sequencing messages including omitted drivers, files,
and registry locations.

.CAB Optional: Package Accelerator file used to automatically rebuild a
previously sequenced virtual application package.

.APPVT Optional: Sequencer Template file used to retain commonly re-
used sequencer settings.

http://www.microsoft.com/en-us/download/details.aspx?id=27760

6

APPV File
The AppV file format is a container built from the specifications of the AppX format, based on the Open

Packaging Conventions (OPC) standard, and used to store a combination of XML and non-XML files

together in a single entity. The AppV file contents can be viewed by renaming the file to a ZIP extension

and exploring its contents. The following should be present in the AppV file:

Note: It is recommend to make a copy of the package prior to renaming and exploring. Editing the

App-V package directly with this method is not supported.

This folder and included files are utilized during virtual application addition and publishing, and will be

covered in more detail. The following is a brief description of each file.

 Root: Directory containing the file system for the virtualized application that was captured

during sequencing.

 [Content_Types].xml: Identifies the core content types in the AppV file (e.g. DLL, EXE, BIN)

 AppxBlockMap.xml: Contains the layout of the AppV file utilizing File, Block, and BlockMap

elements that enable location and validation of files in the App-V package.

 AppxManifest.xml: Metadata for the package that contains required information for adding,

publishing, launching the package. Includes the names and GUIDs associated with the package,

as well as extension points (file type associations and shortcuts).

 FilesystemMetadata.xml: Contains a list of the files captured during sequencing including

attributes (e.g. Directories, Files, Opaque Directories, Empty Directories, Long and short names).

 PackageHistory.xml: Information about the sequencing machine (OS version, IE version, .Net

framework version) and process (Upgrade, Package version).

 Registry.dat: Registry keys and values captured during the sequencing process for the package.

 StreamMap.xml: Contains the list of files for the Primary and publishing feature block. The

publishing feature block contains the ICO files and required portions of files (EXE and DLL) for

publishing the package. The Primary Feature Block, when present, includes files optimized for

streaming during the sequencing process.

7

App-V Client Data Storage Locations
The App-V client performs a number of tasks to ensure the virtual applications run properly and have

the appearance of traditionally installed applications. The process of opening and running virtual

applications requires mapping from the virtual file system and registry to ensure the application has the

required components of a traditional application expected by users. This section focuses on where

App-V stores the assets required to run virtual applications, and provides a description of these assets

that will be used throughout the document. The following table provides a detailed list of locations

where App-V stores data. The following location names are defined in this section and will be used

throughout the document.

Table 1: App-V File Locations

Name Location Description

Package
Store

%ProgramData%\App-V Default location for read only
package files

Machine
Catalog

%ProgramData%\Microsoft\AppV\Client\Catalog Contains per machine
configuration documents

User
Catalog

%AppData%\Microsoft\AppV\Client\Catalog Contains per user configuration
documents

Shortcut
Backups

%AppData%\Microsoft\AppV\Client\Integration\
ShortCutBackups

Stores previous integration points
that enable restore on package
unpublish

Copy on
Write
(COW)
Roaming

%AppData%\Microsoft\AppV\Client\VFS Writeable roaming location for
package modification

Copy on
Write
(COW) Local

%LocalAppData%\Microsoft\AppV\Client\VFS Writeable non-roaming location
for package modification

Machine
Registry

HKLM\Software\Microsoft\AppV Contains package state
information including VReg for
machine or globally published
packages (Machine hive)

User
Registry

HKCU\Software\Microsoft\AppV Contains user package state
information including VReg

User
Registry
Classes

HKCU\Software\Classes\AppV Contains additional user package
state information

Additional details for the table are provided in the section below and throughout the document.

8

Package Store
The App-V Client manages the applications assets mounted in the package store. This location is, by

default, stored at %ProgramData%\App-V, but is configurable during setup or post setup with the Set-

AppVClientConfiguration PowerShell® command which modifies the local registry

(PackageInstallationRoot value under the HKLM\Software\Microsoft\AppV\Client\Streaming key). The

package store must be located at a local path on the client operating system. The individual packages

are stored in the package store in subdirectories named for the Package GUID and Version GUID. An

example of a path to a specific application is:

C:\ProgramData\App-V\PackGUID\VersionGUID

Change the default location of the Package Store during setup following the guidance at:

http://technet.microsoft.com/en-us/library/jj713460.aspx.

Shared Content Store
When the App-V Client is configured in Shared Content Store mode no data is written to disk when a

Stream Fault occurs. Therefore local disk space taken by the packages is minimal (publishing data). This

is highly desirable in VDI environments where local storage can be limited and streaming the

applications from a highly performing network location (such as a SAN) is preferable. For more

information on shared content store mode, review:

http://blogs.technet.com/b/appv/archive/2013/07/22/shared-content-store-in-microsoft-app-v-5-0-

behind-the-scenes.aspx

Note: The Machine and User Catalogs must be located on a local drive even when using Shared Content

Store configurations for the App-V Client.

Package Catalogs
The App-V Client manages the following two file-based locations:

 Catalogs (user and machine).

 Registry locations, depending on how the package is targeted for publishing. There is a Catalog

(data store) for the computer and one for each individual user. The Machine Catalog stores

global information applicable to all users or any user, and the User Catalog stores information

applicable to a specific user. The Catalog is a collection of Dynamic Configurations and manifest

files; there is discrete data both file and registry per package version.

Machine Catalog
The machine catalog is stored in %ProgramData% by default, but is not the same location as the Package

Store. The Package Store is the golden or pristine copy of the package files. The machine catalog is

located by default at %programdata%\Microsoft\AppV\Client\Catalog\ and will include the following

files:

 Manifest.xml

 DeploymentConfiguration.xml

 UserManifest.xml (Globally Published Package)

 UserDeploymentConfiguration.xml (Globally Published Package)

http://technet.microsoft.com/en-us/library/jj713460.aspx
http://blogs.technet.com/b/appv/archive/2013/07/22/shared-content-store-in-microsoft-app-v-5-0-behind-the-scenes.aspx
http://blogs.technet.com/b/appv/archive/2013/07/22/shared-content-store-in-microsoft-app-v-5-0-behind-the-scenes.aspx

9

If a package is part of a connection group the machine catalog is created at the following location in

addition to the specific package location above at

%programdata%\Microsoft\AppV\Client\Catalog\PackageGroups\ConGroupGUID\ConGroupVerGUID

and includes the following files:

 PackageGroupDescriptor.xml

 UserPackageGroupDescriptor.xml (Globally published Connection Group)

The Machine Catalog stores package documents that are available to users on the machine, when

packages are added and published. However, if a package is “global” at publishing time, the integrations

are available to all users. If a package is non-global, the integrations are only published for specific

users, but there are still global resources that are modified and visible to anyone on the machine (e.g.

the package directory is in a shared disk location).

If a package is available to a user on the computer (global or non-global), the manifest is stored in the

Machine Catalog. When a package is published globally, there is a Dynamic Configuration file, stored in

the Machine Catalog; therefore, the determination of whether a package is global or not is defined as

whether there is a policy file (UserDeploymentConfiguration file) in the Machine Catalog.

User Catalog
The User Catalog is created during the publishing process and contains information utilized for

publishing the package, and also at launch to ensure that a package is provisioned to a specific user. The

user catalog is created in a roaming location and includes user specific publishing information at

appdata\roaming\Microsoft\AppV\Client\Catalog\Packages\PkgGUID\VerGUID, in the following files:

 UserManifest.xml

 DynamicConfiguration.xml or UserDeploymentConfiguration.xml

If a package is part of a connection group, the user catalog is created at the following location, in

addition to the specific package location above at

appdata\roaming\Microsoft\AppV\Client\Catalog\PackageGroups\PkgGroupGUID\PkgGroupVerGUID

and includes the following file:

 UserPackageGroupDescriptor.xml

When a package is published for a user, the policy file is stored in the User Catalog. At the same time, a

copy of the manifest is also stored in the User Catalog. When a package entitlement is removed for a

user, the relevant package files are removed from the User Catalog. Looking at the user catalog, an

administrator can view the presence of a Dynamic Configuration file, which indicates the package is

entitled for that user.

For roaming users, the User Catalog needs to be in a roaming or shared location to preserve the legacy

App-V behavior of targeting users by default (a key customer scenario). Entitlement and policy are tied

to a user, not a machine, so once provisioned they should roam with the user.

Shortcut Backups
During the publishing process the App-V Client backs up any shortcuts and integration points to

%AppData%\Microsoft\AppV\Client\Integration\ShortCutBackups. This enables the restoration of these

integration points when the package is unpublished, to the previous versions.

10

Copy on Write Files
The Package Store contains a pristine copy of the package files that have been streamed from the

publishing server. During normal operation of an App-V application the user or service may require

modification of files. These modifications are not made in the package store to preserve the capability

of repairing the application, which removes these changes. These locations, called Copy on Write

(COW), support both roaming and non-roaming locations. The location the modifications are stored

depends on where the application has been programmed to write changes in a native experience.

COW Roaming

The COW Roaming location as described above stores changes to files and directories that are destined

to the typical %AppData% location or \Users\{username}\AppData\Roaming location. These directories

and files are then roamed based on the operating system settings.

COW Local

The COW Local location is similar to the roaming location, but the directories and files are not roamed to

other computers, even if roaming support has been configured. The COW Local location described

above stores changes applicable to typical windows and not the %AppData% location. The directories

listed will vary but there will be two locations for any typical Windows locations (e.g. Common AppData

and Common AppDataS). The S signifies the restricted location when the virtual service requests the

change as a different elevated user from the logged on users. The non-S location stores user based

changes.

11

Package Registry
Before an application can access the package registry data, the App-V Client must make the package

registry data available to the applications. The App-V Client uses the real registry as a backing store for

all registry data.

When a new package is added to the App-V Client, a copy of the REGISTRY.DAT file from the package is

created at %ProgramData%\Microsoft\AppV\Client\VREG\{Version GUID}.dat. The name of the file is

the version GUID with the .DAT extension. The reason this copy is made is to ensure that the actual hive

file in the package is never in use, which would prevent the removal of the package at a later time.

When the first application from the package is launched on the client, the client stages or copies the

contents out of the hive file, recreating the package registry data in an alternate location

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AppV\Client\Packages\PackageGuid\Versions\Versio

nGuid\REGISTRY. The staged registry data has two distinct types of machine data and user data.

Machine data is shared across all users on the machine. User data is staged for each user to a

user-specific location HKCU\Software\Microsoft\AppV\Client\Packages\PackageGuid\Registry\User.

The machine data is ultimately removed at package removal time, and the user data is removed on a

user unpublish operation.

Package Registry Staging vs. Connection Group Registry Staging
When connection groups are present, the previous process of staging the registry holds true, but instead

of having one hive file to process, there are more than one. The files are processed in the order in which

they appear in the connection group XML, with the first writer winning any conflicts.

The staged registry persists the same way as in the single package case. Staged user registry data

remains for the connection group until it is disabled; staged machine registry data is removed on

connection group removal.

Registry.dat from Package Store
%ProgramData%\Microsoft\AppV\Client\Vreg\{Version

Guid}.dat

12

Virtual Registry
The purpose of the virtual registry (VREG) is to provide a single merged view of the package registry and

the native registry to applications. It also provides copy-on-write (COW) functionality – that is any

changes made to the registry from the context of a virtual process are made to a separate COW location.

This means that the VREG must combine up to three separate registry locations into a single view based

on the populated locations in the registry COW -> package -> native. When a request is made for a

registry data it will locate in order until it finds the data it was requesting. Meaning if there is a value

stored in a COW location it will not proceed to other locations, however, if there is no data in the COW

location it will proceed to the Package and then Native location until it finds the appropriate data.

Registry Locations
There are two package registry locations and two connection group locations where the App-V Client

stores registry information, depending on whether the Package is published individually or as part of a

connection group. There are three COW locations for packages and three for connection groups, which

are created and managed by the VREG. Settings for packages and connection groups are not shared:

Single Package VReg:

COW

•Machine Registry\Client\Packages\PkgGUID\REGISTRY (Only elevate process can write)

•User Registry\Client\Packages\PkgGUID\REGISTRY (User Roaming anything written under
HKCU except Software\Classes

•User Registry Classes\Client\Packages\PkgGUID\REGISTRY (HKCU\Software\Classes writes
and HKLM for non elevated process)

Package

•Machine Registry\Client\Packages\PkgGUID\Versions\VerGuid\Registry\Machine

•User Registry Classes\Client\Packages\PkgGUID\Versions\VerGUID\Registry

Native
•Native application registry location

13

Connection Group VReg:

There are two COW locations for HKLM; elevated and non-elevated processes. Elevated processes

always write HKLM changes to the secure COW under HKLM. Non-elevated processes always write

HKLM changes to the non-secure COW under HKCU\Software\Classes. When an application reads

changes from HKLM, elevated processes will read changes from the secure COW under HKLM. Non-

elevated reads from both, favoring the changes made in the unsecure COW first.

COW

•Machine Registry\Client\PackageGroups\GrpGUID\REGISTRY (only elevate process can
write)

•User Registry\Client\PackageGroups\GrpGUID\REGISTRY (Anything written to HKCU except
Software\Classes

•User Registry Classes\Client\PackageGroups\GrpGUID\REGISTRY

Package

•Machine Registry\Client\PackageGroups\GrpGUID\Versions\VerGUID\REGISTRY

•User Registry Classes\Client\PackageGroups\GrpGUID\Versions\VerGUID\REGISTRY

Native
•Native application registry location

14

Pass-through Keys

Pass-through keys enable an administrator to configure certain keys so they can only be read from the

native registry, bypassing the Package and COW locations. Pass-through locations are global to the

machine (not package specific) and can be configured by adding the path to the key, which should be

treated as pass-through to the REG_MULTI_SZ value called PassThroughPaths of the key

HKLM\Software\Microsoft\AppV\Subsystem\VirtualRegistry. Any key that appears under this multi-

string value (and their children) will be treated as pass-through.

The following locations are configured as pass-through locations by default:

 HKEY_CURRENT_USER\SOFTWARE\Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel

 HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\WINEVT

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\eventlog\Application

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger

 HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

 HKEY_LOCAL_MACHINE\SOFTWARE\Policies

 HKEY_CURRENT_USER\SOFTWARE\Policies

The purpose of Pass-through keys is to ensure that a virtual application does not write registry data in

the VReg that is required for non-virtual applications for successful operation or integration. The

Policies key ensures that Group Policy based settings set by the administrator are utilized and not per

package settings. The AppModel key is required for integration with Windows Modern UI based

applications. It is recommend that administers do not modify any of the default pass-through keys, but

in some instances, based on application behavior may require adding additional pass-through keys.

15

App-V Package Store Behavior
App-V 5 manages the Package Store, which is the location where the expanded asset files from the APPV

file are stored. By default, this location is stored at %ProgramData%\App-V, and is limited in terms of

storage capabilities only by free disk space. The package store is organized by the GUIDs for the package

and version as mentioned in the previous section.

Add Packages
App-V Packages are staged upon addition to the computer with the App-V Client. The App-V Client

provides on-demand staging. During publishing or a manual Add-AppVClientPackage, the data structure

is built in the package store (c:\programdata\App-V\{PkgGUID}\{VerGUID}). The package files identified

in the publishing block defined in the StreamMap.xml are added to the system and the top level folders

and child files staged to ensure proper application assets exist at launch.

Mounting Packages
Packages can be explicitly loaded using the PowerShell Mount-AppVClientPackage or by using the App-

V Client UI to download a package. This operation completely loads the entire package into the package

store.

Streaming Packages
The App-V Client can be configured to change the default behavior of streaming. All streaming policies

are stored under the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\APPV\CLIENT\STREAMING. Policies are set

using the PowerShell cmdlet Set-AppvClientConfiguration. The following policies apply to Streaming:

AllowHighCostLaunch – On Windows 8 it allows streaming over 3G and cellular networks

AutoLoad – Specifies the Background Load setting:

0 – Disabled

1 – Previously Used Packages only

2 – All Packages

PackageInstallationRoot – The root folder for the package store in the local machine

PackageSourceRoot – The root override where packages should be streamed from

SharedContentStoreMode – Enables the use of Shared Content Store for VDI scenarios

These settings affect the behavior of streaming App-V package assets to the client. By default, App-V

only downloads the assets required after downloading the initial publishing and primary feature blocks.

There are three specific behaviors around streaming packages that must be explained:

 Background Streaming

 Optimized Streaming

 Stream Faults

16

Background Streaming
The PowerShell cmdlet Get-AppvClientConfiguration can be used to determine the current mode for

background streaming with the AutoLoad setting and modified with the cmdlet Set-

AppvClientConfiguration or from the registry (HKLM\SOFTWARE\Microsoft\AppV\ClientStreaming key).

Background streaming is a default setting where the Autoload seting is set to download previously used

packages. The behavior based on default setting (value=1) downloads App-V data blocks in the

background after the application has been launched. This setting can be disabled all together (value=0)

or enabled for all packages (value=2), whether they have been launched.

Optimized Streaming
App-V packages can be configured with a primary feature block during sequencing. This setting allows

the sequencing engineer to monitor launch files for a specific application, or applications, and mark the

blocks of data in the App-V package for streaming at first launch of any application in the package.

Stream Faults
After the initial stream of any publishing data and the primary feature block, requests for additional files

perform stream faults. These blocks of data are downloaded to the package store on an as-needed

basis. This allows a user to download only a small part of the package, typically enough to launch the

package and run normal tasks. All other blocks are downloaded when a user initiates an operation that

requires data not currently in the package store.

For more information on App-V Package streaming visit:

http://blogs.technet.com/b/virtualvibes/archive/2013/02/27/feature-block-0-the-publishing-feature-

block.aspx

Sequencing for streaming optimization is available at:

http://blogs.technet.com/b/virtualworld/archive/2013/02/27/app-v-5-0-sequencer-package-streaming-

optimisation.aspx

Package Upgrades
App-V Packages require updating throughout the lifecycle of the application. App-V Package upgrades

are similar to the package publish operation, as each version will be created in its own PackageRoot

location: %ProgramData%\App-V\{PkgGUID}\{newVerGUID}. The upgrade operation is optimized by

creating hard links to identical- and streamed-files from other versions of the same package.

Package Removal
The behavior of the App-V Client when packages are removed depends on the method used for removal.

Using an App-V full infrastructure to unpublish the application, the user catalog files (machine catalog

for globally published applications) are removed, but retains the package store location and COW

locations. When the PowerShell cmdlet Remove-AppVClientPackge is used to remove an App-V

Package, the package store location is cleaned. Remember that unpublishing an App-V Package from

the Management Server does not perform a Remove operation. Neither operation will remove the

Package Store package files.

http://blogs.technet.com/b/virtualvibes/archive/2013/02/27/feature-block-0-the-publishing-feature-block.aspx
http://blogs.technet.com/b/virtualvibes/archive/2013/02/27/feature-block-0-the-publishing-feature-block.aspx
http://blogs.technet.com/b/virtualworld/archive/2013/02/27/app-v-5-0-sequencer-package-streaming-optimisation.aspx
http://blogs.technet.com/b/virtualworld/archive/2013/02/27/app-v-5-0-sequencer-package-streaming-optimisation.aspx

17

Roaming Registry and Data
App-V 5 is able to provide a near-native experience when roaming, depending on how the application

being used is written. By default, App-V will roam AppData stored in the roaming location, based on the

roaming configuration of the operating system. Other locations for storage of file-based data do not

roam from machine to machine, since they are in locations that are not roamed.

Registry Based Data
App-V registry roaming falls into two scenarios; applications executed as standard users, and

applications executed with elevation.

In the first scenario, when a standard user launches an App-V application, both HKLM and HKCU for App-

V applications are stored in the HKCU hive on the machine. This presents as two distinct paths:

 HKLM:

HKCU\SOFTWARE\Classes\AppV\Client\Packages\{PkgGUID}\REGISTRY\MACHINE\SOFTWARE

 HKCU:

HKCU\SOFTWARE\Microsoft\AppV\Client\Packages\{PkgGUID}\REGISTRY\USER\{UserSID}\SOFT

WARE

The locations are enabled for roaming based on the operating system settings.

For the second scenario, where an application is launched with elevation, the HKLM data is stored in the

HKLM hive on the local machine and HKCU data is stored in the User Registry location. This eliminates

these settings from being roamed with normal operating system roaming configurations, and the

resultant registry keys and values are stored in the following location:

 HKLM\SOFTWARE\Microsoft\AppV\Client\Packages\{PkgGUID}\{UserSID}\REGISTRY\MACHINE\

SOFTWARE

 HKCU\SOFTWARE\Microsoft\AppV\Client\Packages\{PkgGUID}\Registry\User\{UserSID}\SOFTW

ARE

App-V and Folder Redirection
App-V 5.0 SP2 supports appdata folder redirection. When the virtual environment is started, the

roaming appdata state from the user’s roaming appdata directory is copied to the local cache.

Conversely, when the virtual environment is shutdown, the local cache associated with a specific user’s

roaming appdata is transferred to the actual location of that user’s roaming appdata directory.

A typical package has several locations mapped in the users backing store for settings in both

AppData\Local and AppData\Roaming. These locations are the Copy on Write locations that are used to

store changes made to the package VFS directories and protecting the default package VFS and stored

per user in the user’s profile. The table below shows locations, both local and roaming, when Folder

Redirection has not been implemented.

18

VFS directory in
package

Mapped location of backing store

ProgramFilesX86 C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\ProgramFilesX86

SystemX86 C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\SystemX86

Windows C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\Windows

APPV_ROOT C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\APPV_ROOT

AppData C:\users\jsmith\AppData\Roaming\Microsoft\AppV\Client\VFS\<GUID>\AppData

For situations when Folder Redirection has been implemented for %AppData%, the location is

redirected, typically to a network location.

VFS directory in
package

Mapped location of backing store

ProgramFilesX86 C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\ProgramFilesX86

SystemX86 C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\SystemX86

Windows C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\Windows

APPV_ROOT C:\users\jsmith\AppData\Local\Microsoft\AppV\Client\VFS\<GUID>\APPV_ROOT

AppData \\Fileserver\users\jsmith\roaming\Microsoft\AppV\Client\VFS\<GUID>\AppData

The current App-V Client VFS driver cannot write to network locations, so the App-V Client detects the

presence of Folder Redirection and copies the data on the local drive during publishing and on Virtual

Environment startup. After the user closes the App-V application and the App-V Client closes the virtual

environment the local storage of the VFS AppData is copied back to the network, enabling roaming to

additional machines where the process will be repeated. The detailed steps of the processes are:

1. During publishing or virtual environment startup the App-V Client detects the location of the

AppData directory.
2. If the roaming AppData path is local or there is not any mapped AppData\Roaming location

nothing happens.
3. If the roaming AppData path is not local, the VFS AppData directory will be mapped to the

local AppData directory.

This process solves the problem of a non-local %AppData% that is not supported by the App-V Client VFS

driver. However the data stored in this new location is not roamed with Folder Redirection. All changes

during the execution of the application happen to the local AppData location and must be copied to the

redirected location. The detailed steps of this process are:

1. App-V application is shutdown, shutting down the virtual environment.
2. The local cache of the roaming AppData location is compressed and stored in a ZIP file.
3. A timestamp at the end of the ZIP packaging process is used to name the file.
4. The timestamp is recorded in the registry

HKEY_CURRENT_USER\Software\Microsoft\AppV\Client\Packages\<GUID>\AppDataTime as

the last known AppData timestamp.

5. The Folder Redirection process is called to evaluate and iniate the ZIP file upload to the

roaming AppData directory.

19

The timestamp is used to determine a last writer wins scenario if there is a conflict and is utilized to

optimize the download of the data when the App-V application is published or the virtual environment is

started. Folder Redirection will make the data available from any other clients covered by the

supporting policy and will initiate the process of storing the AppData\Roaming data to the local AppData

location on the client. The detailed processes are:

1. User starts the virtual environment by executing and application.
2. Check the roaming AppData directory for the most recent time stamped ZIP file, if present.
3. Check the registry for the last known uploaded timestamp, if present.
4. When the local last known upload timestamp is greater or equal to the timestamp from the

ZIP file, no data is downloaded.
5. If the local last known upload timestamp is less than roaming AppData location the ZIP file is

extracted to the local temp directory in the user’s profile.
6. After successful extraction of the ZIP file, the local cache of the roaming AppData directory

is renamed and the new data is moved into place.
7. The renamed directory is deleted and the application opens with the most recently saved

roaming AppData data.

This completes the successful roaming of application settings that are present in AppData\Roaming

locations. The only other condition that must be addressed is a package repair operation. The details of

the process are:

1. During repair detect if the path to the user’s roaming AppData directory is not local.
2. Map the non-local roaming AppData path targets are recreated in both the expected

roaming and local AppData locations.
3. Delete the timestamp stored in the registry, if present.

This process will recreate both the local and network locations for AppData and remove the registry

record of the timestamp.

20

App-V Client Application Lifecycle Management
In an App-V Full Infrastructure, after applications are sequenced they are managed and published to

users or computers via the App-V Management and Publishing servers. This section details the

operations that occur during the common App-V application lifecycle operations (Add, publishing,

launch, upgrade, and removal) and the file and registry locations that are changed and modified from

the App-V Client perspective. The App-V Client operations are performed as a series of PowerShell

commands initiated on the computer running the App-V Client.

This document focuses on App-V Full Infrastructure solutions. For specific information on App-V

Integration with Configuration Manager 2012 visit: http://www.microsoft.com/en-

us/download/details.aspx?id=38177

The App-V application lifecycle tasks are triggered at user login (default), machine startup, or as

background timed operations. The settings for the App-V Client operations, including Publishing

Servers, refresh intervals, package script enablement, and others, are configured during setup of the

client or post-setup with PowerShell commands. See the How to Deploy the Client section on TechNet

at: http://technet.microsoft.com/en-us/library/jj713460.aspx or utilize the PowerShell:

Get additional help for App-V Powershell commands at:

http://blogs.technet.com/b/appv/archive/2012/12/03/app-v-5-0-client-powershell-deep-dive.aspx or

begin by typing the following command from PowerShell

get-command *appv*

Publishing Refresh
The publishing refresh process is comprised of several smaller operations that are performed on the

App-V Client. Since App-V is an application virtualization technology and not a task scheduling

technology, the Windows Task Scheduler is utilized to enable the process at user logon, machine

startup, and at scheduled intervals. The configuration of the client during setup listed above is the

preferred method when distributing the client to a large group of computers with the correct settings.

These client settings can be configured with the following PowerShell cmdlets:

 Add-AppVPublishingServer: Configures the client with an App-V Publishing Server that provides

App-V packages.

 Set-AppVPublishingServer: Modifies the current settings for the App-V Publishing Server.

 Set-AppVClientConfiguration: Modifies the currents settings for the App-V Client.

 Sync-AppVPublishingServer: Initiates an App-V Publishing Refresh process manually. This is also

utilized in the scheduled tasks created during configuration of the publishing server.

The focus of the following sections is to detail the operations that occur during different phases of an

App-V Publishing Refresh. The topics include:

 Adding an App-V Package

 Publishing an App-V Package

http://www.microsoft.com/en-us/download/details.aspx?id=38177
http://www.microsoft.com/en-us/download/details.aspx?id=38177
http://technet.microsoft.com/en-us/library/jj713460.aspx
http://blogs.technet.com/b/appv/archive/2012/12/03/app-v-5-0-client-powershell-deep-dive.aspx

21

Adding an App-V Package
Adding an App-V package to the client is the first step of the publishing refresh process. The end result is

the same as the Add-AppVClientPackage cmdlet in PowerShell, except during the publishing refresh add

process, the configured publishing server is contacted and passes a high-level list of applications back to

the client to pull more detailed information and not a single package add operation. The process

continues by configuring the client for package or connection group additions or updates, then accesses

the AppV file. Next, the contents of the AppV file are expanded and placed on the local operating

system in the appropriate locations. The following is a detailed workflow of the process, assuming the

package is configured for Fault Streaming.

Steps

1. Manual initiation via PowerShell or Task Sequence initiation of the Publishing Refresh process.

a. The App-V Client makes an HTTP connection and requests a list of applications based on

the target. The Publishing refresh process supports targeting machines or users.

b. The App-V Publishing Server uses the identity of the initiating target, user or machine,

and queries the database for a list of entitled applications. The list of applications is

provided as an XML response, which the client uses to send additional requests to the

server for more information on a per package basis.

2. The Publishing Agent on the App-V Client performs all actions below serialized.

a. Evaluate any connection groups that are unpublished or disabled, since package version

updates that are part of the connection group cannot be processed.

3. Configure the packages by identifying an Add or Update operations.

a. The App-V Client utilizes the AppX API from Windows and accesses the AppV file from

the publishing server.

b. The package file is opened and the AppXManifest.xml and StreamMap.xml are

downloaded to the Package Store.

c. Completely stream publishing block data defined in the StreamMap.xml.

i. Store the publishing block data in the Package Store\PkgGUID\VerGUID\Root

1. Icons: Targets of extension points.

2. Portable Executable Headers (PE Headers): Targets of extension points

that contain the base information about the image need on disk,

directly accessed or via file types.

3. Scripts: Download scripts directory for use throughout the publishing

process.

d. Populate the Package store

i. Create sparse files on disk that represent the extracted package for any

directories listed.

ii. Stage top level files and directories under root.

iii. All other files are created when the directory is listed as sparse on disk and

streamed on demand.

e. Create the machine catalog entries:

i. Create the Manifest.xml and DeploymentConfiguration.xml from the package

files (if no DeploymentConfiguration.xml file in the package a placeholder is

created)

22

f. Create location of the package store in the registry

HKLM\Software\Microsoft\AppV\Client\Packages\PkgGUID\Versions\VerGUID\Catalog

g. Create the Registry.dat file from the package store to

%ProgramData%\Microsoft\AppV\Client\VReg\{VersionGUID}.dat

h. Register the package with the App-V Kernal Mode Driver

HKLM\Microsoft\Software\AppV\MAV

i. Invoke scripting from the AppxManifest.xml or DeploymentConfig.xml file for Package

Add timing.

4. Configure Connection Groups by adding and enabling or disabling.

5. Remove objects that are not published to the target (user or machine).

Note: This will not perform a package deletion but rather remove integration points for the

specific target (user or machine) and remove user catalog files (machine catalog files for globally

published).

6. Invoke background load mounting based on client configuration.

7. Packages that already have publishing information for the machine or user are immediately

restored.

Note: This condition occurs as a product of removal without unpublishing with background

addition of the package.

This completes an App-V package add of the publishing refresh process. The next step is publishing the

package to the specific target (machine or user).

23

Figure 1: Package Add File and Registry Data

24

Publishing an App-V Package
During the Publishing Refresh operation, the specific publishing operation (Publish-AppVClientPackage)

adds entries to the user catalog, maps entitlement to the user, identifies the local store, and finishes by

completing any integration steps. The following are the detailed steps.

Steps

1. Package entries are added to the user catalog

a. User targeted packages: the UserDeploymentConfiguration.xml and UserManifest.xml

are placed on the machine in the User Catalog

b. Machine targeted (global) packages: the UserDeploymentConfiguration.xml is placed in

the Machine Catalog

2. Register the package with the kernel mode driver for the user at

HKLM\Software\Microsoft\AppV\MAV

3. Perform integration tasks.

a. Create extension points.

b. Store backup information in the user’s registry and roaming profile (Shortcut Backups).

Note: This enables restore extension points if the package is unpublished.

c. Run scripts targeted for publishing timing.

Publishing an App-V Package that is part of a Connection Group is very similar to the above process. For

connection groups, the path that stores the specific catalog information includes PackageGroups as a

child of the Catalog Directory. Review the machine and users catalog information above for details.

25

Figure 2: Package Publishing File and Registry Data

26

Application Launch
After the Publishing Refresh process, the user launches and subsequently re-launches an App-V

application. The process is very simple and optimized to launch quickly with a minimum of network

traffic. The App-V Client checks the path to the user catalog for files created during publishing. After

rights to launch the package are established, the App-V Client creates a virtual environment, begins

streaming any necessary data, and applies the appropriate manifest and deployment configuration files

during virtual environment creation. With the virtual environment created and configured for the

specific package and application, the application starts.

Steps

1. User launches the application by clicking on a shortcut or file type invocation.

2. The App-V Client verifies existence in the User Catalog for the following files

a. UserDeploymentConfiguration.xml

b. UserManifest.xml

3. If the files are present, the application is entitled for that specific user and the application will

start the process for launch. There is no network traffic at this point.

4. Next, the App-V Client checks that the path for the package registered for the App-V Client

service is found in the registry.

5. Upon finding the path to the package store, the virtual environment is created.

a. If this is the first launch, the Primary Feature Block downloads, if present.

6. After downloading, the App-V Client service consumes the manifest and deployment

configuration files to configure the virtual environment and all App-V subsystems are loaded.

7. The Application launches.

8. For any missing files in the package store (sparse files), App-V will stream fault the files on an as

needed basis.

Subsequent launches of the package are the same as this initial launch process, only stream faulting new

data.

27

Figure 3: Application Launch File and Registry Data

28

Upgrading an App-V Package
The App-V 5 package upgrade process differs from the older versions of App-V. App-V supports multiple

versions of the same package on a machine entitled to different users. Package versions can be added

at any time as the package store and catalogs are updated with the new resources. The only process

specific to the addition of new version resources is storage optimization. During an upgrade, only the

new files are added to the new version store location and hard links are created for unchanged files.

This reduces the overall storage by only presenting the file on one disk location and then projecting it

into all folders with a file location entry on the disk. The specific details of upgrading an App-V Package

are as follows:

Steps

1. The App-V Client performs a Publishing Refresh and discovers a newer version of an App-V

Package.

2. Package entries are added to the appropriate catalog for the new version

a. User targeted packages: the UserDeploymentConfiguration.xml and UserManifest.xml

are placed on the machine in the user catalog at

appdata\roaming\Microsoft\AppV\Client\Catalog\Packages\PkgGUID\VerGUID

b. Machine targeted (global) packages: the UserDeploymentConfiguration.xml is placed in

the machine catalog at

%programdata%\Microsoft\AppV\Client\Catalog\Packages\PkgGUID\VerGUID

3. Register the package with the kernel mode driver for the user at

HKLM\Software\Microsoft\AppV\MAV

4. Perform integration tasks.

a. Integrate extensions points (EP) from the Manifest and Dynamic Configuration files.

i. File based EP data is stored in the AppData folder utilizing Junction Points from

the package store.

ii. Version 1 EPs already exist when a new version becomes available.

iii. The extension points are switched to the Version 2 location in machine or user

catalogs for any newer or updated extension points.

b. Run scripts targeted for publishing timing.

c. Install Side by Side assemblies as required.

29

Upgrading an in use App-V Package
App-V 5 SP2 supports upgrading packages that are in use by a user during the upgrade process. The

App-V Client supports publishing multiple versions of the same package, however if a user is currently

using the package that is being upgraded, it cannot be upgraded while an application or any component

of the package is in use. There are two operations that must be completed before the newer version of

the package can be used by a user:

1. The virtual application must be added to the machine: This operation can occur at any time as it

is machine specific and only requires performing tasks detailed in the Package Add section

above.

2. The virtual application must be published: The publishing process detailed in the Package

Publishing section above, requires updating extension points on the system which cannot occur

while a user has launched the application.

The first scenario is an App-V package that is not in use, which requires that all components of the

package including any virtual application, COM server, or Shell Extension are not in use that are part of

the package. The administrator publishes a newer version of the package and the upgrade works the

next time a component or application inside the package is launched, the new version is streamed and

run. Nothing has changed in this scenario in App-V 5 SP2 from previous releases of App-V 5.

However, when the App-V package is in use when the newer version has been published by an

administrator, the process and when the App-V package is actually upgrade is different. In this upgrade

scenario, since the App-V package is in use, the upgrade operation is set to pending by the App-V Client,

meaning that it is queued and carried out later when the package is not in use. For typical scenarios

where an App-V package application is in use the user simply shuts down the virtual application, or for

scenarios where the App-V package has published Shell Extensions (Office 2013) which are permanently

loaded by Windows Explorer, the user cannot be logged in. In the later scenario the users must log off

and the log in to initiate the App-V Package upgrade.

Global vs User Publishing

App-V Packages can be published in one of two ways; User which entitles an App-V package to a specific

user or group of users and Global which entitles the App-V package to the entire machine for all users of

the machine. Once a package upgrade has been pended and the App-V package is not in use, consider

the two types of publishing:

1. Globally published: the application is published to a machine; all users on that machine can use

it. The upgrade will happen when the App-V Client Service starts, which effectively means a

machine restart.

2. User published: the application is published to a user. If there are multiple users on the

machine, the application can be published to a subset of the users. The upgrade will happen

when the user logs in or when it is published again (periodically, ConfigMgr Policy refresh and

evaluation, or an App-V periodic publishing/refresh, or explicitly via PowerShell commands).

Removing an App-V Packages
Removing App-V applications in a Full Infrastructure is an unpublish operation, and does not perform a

package removal. The process is the same as the publish process above, but instead of adding the

removal process reverses the changes that have been made for App-V Packages.

30

Repairing an App-V Package
The repair operation is very simple but may affect many locations on the machine. The previously

mentioned Copy on Write (COW) locations are removed, and extension points are de-integrated and

then re-integrated. Please review the COW data placement locations by reviewing where they are

registered in the registry. This operation is done automatically and there is no administrative control

other than initiating a Repair operation from the App-V Client Console or via PowerShell (Repair-

AppVClientPackage).

31

Integration of App-V Packages
The App-V Client and package architecture provides specific integration with the local operating system

during the addition and publishing of packages. Three files define the integration or extension points for

an App-V Package:

 AppXManifest.xml: Stored inside of the package with fallback copies stored in the package store

and the user profile. Contains the options created during the sequencing process.

 DeploymentConfig.xml: Provides configuration information of computer and user based

integration extension points.

 UserConfig.xml: A subset of the Deploymentconfig.xml that only provides user- based

configurations and only targets user-based extension points.

Rules of Integration
When App-V applications are published to a computer with the App-V Client, some specific actions take

place as described in the list below:

 Global Publishing: Shortcuts are stored in the All Users profile location and other extension

points are stored in the registry in the HKLM hive.

 User Publishing: Shortcuts are stored in the current user account profile and other extension

points are stored in the registry in the HKCU hive.

 Backup and Restore: Existing native application data and registry (such as FTA registrations) are

backed up during publishing.

o App-V packages are given ownership based on the last integrated package where the

ownership is passed to the newest published App-V application.

o Ownership transfers from one App-V package to another when the owning App-V

package is unpublished. This will not initiate a restore of the data or registry.

o Restore the backed up data when the last package is unpublished or removed on a per

extension point basis.

32

Extension Points
The App-V publishing files (manifest and dynamic configuration) provide several extension points that

enable the application to integrate with the local operating system. These extension points perform

typical application installation tasks, such as placing shortcuts, creating file type associations, and

registering components. As these are virtualized applications that are not installed in the same manner

a traditional application, there are some differences. The following is a list of extension points covered

in this section:

 Shortcuts

 File Type Associations

 Shell Extensions

 COM

 Software Clients

 Application capabilities

 URL Protocol Handler

 AppPath

 Virtual Application

Shortcut
The short cut is one of the basic elements of integration with the OS and is the interface for direct user

launch of an App-V application. During the publishing and unpublishing of App-V applications.

From the package manifest and dynamic configuration XML files, the path to a specific application

executable can be found in a section similar to the following:

 <Extension Category="AppV.Shortcut">
 <Shortcut>
 <File>[{Common Desktop}]\Adobe Reader 9.lnk</File>
 <Target>[{AppVPackageRoot}]\Reader\AcroRd32.exe</Target>
 <Icon>[{Windows}]\Installer\{AC76BA86-7AD7-1033-7B44-
A94000000001}\SC_Reader.ico</Icon>
 <Arguments />
 <WorkingDirectory />
 <ShowCommand>1</ShowCommand>
 <ApplicationId>[{AppVPackageRoot}]\Reader\AcroRd32.exe</ApplicationId>
 </Shortcut>
 </Extension>

As mentioned previously, the App-V shortcuts are placed by default in the user’s profile based on the

refresh operation. Global refresh places shortcuts in the All Users profile and user refresh stores them

in the specific user’s profile. The actual executable is stored in the Package Store. The location of the

ICO file is a tokenized location in the App-V package.

33

File Type Associations
The App-V Client manages the local operating system File Type Associations during publishing, which

enables users to use file type invocations or to open a file with a specifically registered extension (.docx)

to start an App-V application. File type associations are present in the manifest and dynamic

configuration files as represented in the example below:

<Extension Category="AppV.FileTypeAssociation">
 <FileTypeAssociation>
 <FileExtension MimeAssociation="true">
 <Name>.xdp</Name>
 <ProgId>AcroExch.XDPDoc</ProgId>
 <ContentType>application/vnd.adobe.xdp+xml</ContentType>
 </FileExtension>
 <ProgId>
 <Name>AcroExch.XDPDoc</Name>
 <Description>Adobe Acrobat XML Data Package File</Description>
 <EditFlags>65536</EditFlags>
 <DefaultIcon>[{Windows}]\Installer\{AC76BA86-7AD7-1033-7B44-
A94000000001}\XDPFile_8.ico</DefaultIcon>
 <ShellCommands>
 <DefaultCommand>Read</DefaultCommand>
 <ShellCommand>
 <ApplicationId>[{AppVPackageRoot}]\Reader\AcroRd32.exe</ApplicationId>
 <Name>Open</Name>
 <CommandLine>"[{AppVPackageRoot}]\Reader\AcroRd32.exe" "%1"</CommandLine>
 </ShellCommand>
 <ShellCommand>
 <ApplicationId>[{AppVPackageRoot}]\Reader\AcroRd32.exe</ApplicationId>
 <Name>Printto</Name>
 <CommandLine>"[{AppVPackageRoot}]\Reader\AcroRd32.exe" /t "%1" "%2" "%3"
"%4"</CommandLine>
 </ShellCommand>
 <ShellCommand>
 <ApplicationId>[{AppVPackageRoot}]\Reader\AcroRd32.exe</ApplicationId>
 <Name>Read</Name>
 <FriendlyName>Open with Adobe Reader 9</FriendlyName>
 <CommandLine>"[{AppVPackageRoot}]\Reader\AcroRd32.exe" "%1"</CommandLine>
 </ShellCommand>
 </ShellCommands>
 </ProgId>
 </FileTypeAssociation>
 </Extension>
Note: In this example above, red is the extension, green is the ProgId value (which points to the

adjoining ProgId), and blue is the command line, which points to the application executable.

34

Shell Extensions
Shell extensions will be picked up and embedded in the package automatically while sequencing. This is

similar to how extension points are handled with App-V 5.0, and requires no additional work using the

Sequencer. When the package is published to the client, the user will be able to utilize the shell

extension functionality as they would if the application was locally installed. The application requires no

additional set up or configuration on the client to enable the shell extension functionality. The following

list displays the supported Shell Extensions.

Supported Shell Extensions:

Handler Description

Context
menu handler

 Adds menu items to the context menu. It is
called before the context menu is displayed.

Drag-and-
drop handler

 Controls the action upon right-click drag-
and-drop and modifies the context menu
that appears.

Drop target
handler

 Controls the action after a data object is
dragged-and-dropped over a drop target
such as a file.

Data object
handler

 Controls the action after a file is copied to
the clipboard or dragged-and-dropped over
a drop target. It can provide additional
clipboard formats to the drop target.

Property
sheet handler

 Replaces or adds pages to the property
sheet dialog box of an object.

Infotip
handler

 Allows retrieving flags and infotip
information for an item and displaying it
inside a popup tooltip upon mouse- hover.

Column
handler

 Allows creating and displaying custom
columns in Windows Explorer Details view.
It can be used to extend sorting and
grouping.

35

COM
The App-V Client supports publishing applications with support for COM integration and virtualization.

COM integration allows the App-V Client to register COM objects on the local operating system and

virtualization of the objects. For the purposes of this document, the integration of COM objects requires

additional detail.

App-V supports registering COM objects from the package to the local operating system with two

process types: Out-of-process and in-process. Registering COM objects is accomplished with one or a

combination of multiple modes of operation for a specific App-V package that includes off, Isolated, and

Integrated. The integrated mode is configured for either the out-of-process or in-process type.

Configuration of COM modes and types is accomplished with dynamic configuration files

(deploymentconfig.xml or userconfig.xml).

Details on App-V integration are available at:

http://blogs.technet.com/b/appv/archive/2013/01/03/microsoft-application-virtualization-5-0-

integration.aspx

Software Clients and Application Capabilities
App-V supports specific software clients and application capabilities extension points that enable

virtualized applications to be registered with the software client of the operating system. This enables

users to select default programs for operations like email, instant messaging, and media player. This

operation is performed in the control panel with the Set Program Access and Computer Defaults, and

configured during sequencing in the manifest or dynamic configuration files. Application capabilities are

only supported when the App-V applications are published globally.

Example of software client registration of an App-V based mail client.

 <SoftwareClients Enabled="true">
 <ClientConfiguration EmailEnabled="true" />
 <Extensions>
 <Extension Category="AppV.SoftwareClient">
 <SoftwareClients>
 <EMail MakeDefault="true">
 <Name>Mozilla Thunderbird</Name>
 <Description>Mozilla Thunderbird</Description>
 <DefaultIcon>[{ProgramFilesX86}]\Mozilla Thunderbird\thunderbird.exe,0</DefaultIcon>
 <InstallationInformation>
 <RegistrationCommands>
 <Reinstall>"[{ProgramFilesX86}]\Mozilla Thunderbird\uninstall\helper.exe"
/SetAsDefaultAppGlobal</Reinstall>
 <HideIcons>"[{ProgramFilesX86}]\Mozilla Thunderbird\uninstall\helper.exe"
/HideShortcuts</HideIcons>
 <ShowIcons>"[{ProgramFilesX86}]\Mozilla Thunderbird\uninstall\helper.exe"
/ShowShortcuts</ShowIcons>
 </RegistrationCommands>
 <IconsVisible>1</IconsVisible>
 <OEMSettings />
 </InstallationInformation>

http://blogs.technet.com/b/appv/archive/2013/01/03/microsoft-application-virtualization-5-0-integration.aspx
http://blogs.technet.com/b/appv/archive/2013/01/03/microsoft-application-virtualization-5-0-integration.aspx

36

 <ShellCommands>
 <ApplicationId>[{ProgramFilesX86}]\Mozilla Thunderbird\thunderbird.exe</ApplicationId>
 <Open>"[{ProgramFilesX86}]\Mozilla Thunderbird\thunderbird.exe" -mail</Open>
 </ShellCommands>
 <MAPILibrary>[{ProgramFilesX86}]\Mozilla
Thunderbird\mozMapi32_InUse.dll</MAPILibrary>
 <MailToProtocol>
 <Description>Thunderbird URL</Description>
 <EditFlags>2</EditFlags>
 <DefaultIcon>[{ProgramFilesX86}]\Mozilla Thunderbird\thunderbird.exe,0</DefaultIcon>
 <ShellCommands>
 <ApplicationId>[{ProgramFilesX86}]\Mozilla Thunderbird\thunderbird.exe</ApplicationId>
 <Open>"[{ProgramFilesX86}]\Mozilla Thunderbird\thunderbird.exe" -osint -compose
"%1"</Open>
 </ShellCommands>
 </MailToProtocol>
 </EMail>
 </SoftwareClients>
 </Extension>
 </Extensions>
 </SoftwareClients>

NOTE: In this example, red is the overall Software Clients setting to integrate Email clients, green is the
flag to set a particular Email client as the default Email client, and blue is the MAPI dll registration.

URL Protocol handler
Applications do not always specifically called virtualized applications utilizing file type invocation. For,

example, in an application that supports embedding a mailto: link inside a document or web page, the

user clicks on a mailto: link and expects to get their registered mail client. App-V supports URL Protocol

handlers that can be registered on a per-package basis with the local operating system. During

sequencing, the URL protocol handlers are automatically added to the package.

For situations where there is more than one application that could register the specific URL Protocol

handler, the dynamic configuration files can be utilized to modify the behavior and suppress or disable

this feature for an application that should not be the primary application launched.

AppPath
The AppPath extension point supports calling App-V applications directly from the operating system.

This is typically accomplished from the Run or Start Screen, depending on the operating system, which

enables administrators to provide access to App-V applications from operating system commands or

scripts without calling the specific path to the executable. It therefore avoids modifying the system

path environment variable on all systems, as it is accomplished during publishing.

The AppPath extension point is configured either in the manifest or in the dynamic configuration files

and is stored in the registry on the local machine during publishing for the user. For additional

information on AppPath review: http://blogs.technet.com/b/virtualvibes/archive/2012/11/30/app-

paths-a-virtual-application-extension-in-app-v-5-0.aspx

http://blogs.technet.com/b/virtualvibes/archive/2012/11/30/app-paths-a-virtual-application-extension-in-app-v-5-0.aspx
http://blogs.technet.com/b/virtualvibes/archive/2012/11/30/app-paths-a-virtual-application-extension-in-app-v-5-0.aspx

37

Virtual Application
This subsystem provides a list of applications captured during sequencing which is usually consumed by

other App-V components. Integration of extension points belonging to a particular application can be

disabled using dynamic configuration files. For example, if a package contains two applications, it is

possible to disable all extension points belonging to one application, in order to allow only integration of

extension points of other application.

Extension Point Rules
The extension points described above are integrated into the operating system based on how the

packages has been published. Global publishing places extension points in public machine locations,

where user publishing places extension points in user locations. For example a shortcut that is created

on the desktop and published globally will result in the file data for the shortcut (%Public%\Desktop)

and the registry data (HKLM\Software\Classes). The same shortcut would have file data

(%UserProfile%\Desktop) and registry data (HKCU\Software\Classes).

Extension points are not all published the same way, where some extension points will require global

publishing and others require sequencing on the specific operating system and architecture where they

are delivered. Below is a table that describes these two key rules.

Table 2: Extension Point Requirements

Virtual Extension Requires target OS Sequencing Requires Global Publishing

Shortcut

File Type Association

URL Protocols X

AppPaths X

COM Mode

Software Client X

Application Capabilities X X

Context Menu Handler X X

Drag-and-drop Handler X

Data Object Handler X

Property Sheet Handler X

Infotip Handler X

Column Handler X

Shell Extensions X

Browser Helper Object X X

Active X Object X X

38

Dynamic Configuration Processing
Deploying App-V packages to one machine or user is very simple. However, as organizations deploy

App-V applications across business lines and geographic and political boundaries, the ability to sequence

an application one time with one set of settings becomes impossible. App-V was designed for this

scenario, as it captures specific settings and configurations during sequencing in the Manifest file, but

also supports modification with Dynamic Configuration files.

App-V dynamic configuration allows for specifying a policy for a package either at the machine level or

at the user level. The Dynamic Configuration files enable sequencing engineers to modify the

configuration of a package, post-sequencing, to address the needs of individual groups of users or

machines. In some instances it may be necessary to make modifications to the application to provide

proper functionality within the App-V environment. For example, it may be necessary to make

modifications to the _*config.xml files to allow certain actions to be performed at a specified time

during the execution of the application, like disabling a mailto extension to prevent a virtualized

application from overwriting that extension from another application.

App-V Packages contain the Manifest file inside of the APPV package file, which is representative of

sequencing operations and is the policy of choice unless Dynamic Configuration files are assigned to a

specific package. Post-sequencing, the Dynamic Configuration files can be modified to allow the

publishing of an application to different desktops or users with different extension points. The two

Dynamic Configuration Files are the Dynamic Deployment Configuration (DDC) and Dynamic User

Configuration (DUC) files. This section focuses on the combination of the manifest and dynamic

configuration files.

Example for Dynamic Configuration Files
The example below shows the combination of the Manifest, Deployment Configuration and User

Configuration files after publishing and during normal operation. These examples are abbreviated

examples of each of the files. The purpose is show the combination of the files only and not to be a

complete description of the specific categories available in each of the files. For more information

39

review the App-V 5 Sequencing Guide at: http://www.microsoft.com/en-

us/download/details.aspx?id=27760

Figure 4: Example configuration files

http://www.microsoft.com/en-us/download/details.aspx?id=27760
http://www.microsoft.com/en-us/download/details.aspx?id=27760

40

Figure 5: Post publishing combination

41

Side by Side Assemblies
App-V supports the automatic packaging of side-by-side (SxS) assemblies during sequencing and

deployment on the client during virtual application publishing. App-V 5 SP2 supports capturing SxS

assemblies during sequencing for assemblies not present on the sequencing machine. And for

assemblies consisting of Visual C++ (Version 8 and newer) and/or MSXML run-time, the sequencer will

automatically detect and capture these dependencies even if they were not installed during monitoring.

The Side by Side assemblies feature removes the limitations of previous versions of App-V, where the

App-V Sequencer did not capture assemblies already present on the sequencing workstation, and

privatizing the assemblies which limited to one bit version per package. This behavior resulted in

deployed App-V applications to clients missing the required SxS assemblies, causing application launch

failures. This forced the packaging process to document and then ensure that all assemblies required

for packages were locally installed on the user’s client operating system to ensure support for the virtual

applications. Based on the number of assemblies and the lack of application documentation for the

required dependencies, this task was both a management and implementation challenge.

Side by Side Assembly support in App-V has the following features.

 Automatic captures of SxS assembly during Sequencing, regardless of whether the assembly was

already installed on the sequencing workstation.

 The App-V Client automatically installs required SxS assemblies to the client computer at

publishing time when they are not present.

 The Sequencer reports the VC run-time dependency in Sequencer reporting mechanism.

 The Sequencer allows opting to not package the assemblies that are already installed on the

sequencer, supporting scenarios where the assemblies have previously been installed on the

target computers.

Automatic publishing of SxS assemblies
During publishing of an App-V package with SxS assemblies the App-V Client will check for the presence

of the assembly on the machine. If the assembly does not exist, the client will deploy the assembly to

the machine. Packages that are part of connection groups will rely on the Side by Side assembly

installations that are part of the base packages, as the connection group does not contain any

information about assembly installation.

Note: UnPublishing or removing a package with an assembly does not remove the assemblies for that

package.

42

Client Logging

The App-V client logs information to the Windows Event log in standard ETW format. The specific App-V

events can be found in the event viewer, under Applications and Services Logs\Microsoft\AppV\Client.

There are three specific categories of events recorded described below.

Admin: Logs events for configurations being applied to the App-V Client, and contains the primary

warnings and errors.

Operational: Logs the general App-V execution and usage of individual components creating an audit

log of the App-V operations that have been completed on the App-V Client.

Virtual Application: Logs virtual application launches and use of virtualization subsystems.

43

Conclusion
The document has presented detailed information about how App-V performs Integration of virtual

applications that present themselves like traditionally installed applications. Based on the information

presented in the document, administrators and sequencing engineers have a better understanding of

the assets that are part of an AppV Package and where the App-Client places those assets. The details

provided enable better support and understanding of an App-V solution. Keep in mind that many of the

details presented are specific integration rules that can’t be modified, but understanding them assists in

an overall knowledge of the App-V product and how it works.

